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Introduction

In recent years it has become clear that large numbers of RNAs
fold into well defined three-dimensional structures, providing
interfaces for specific intermolecular protein–RNA and small
molecule–RNA interactions, which are essential parts of regula-
tory networks or antiinfective responses.[1] These findings have
led to constantly increasing interest in RNA as a potential drug
target with a plethora of potential applications,[2] and several
natural and synthetic small molecules have been reported to
interact specifically with RNA.[3] One of the best characterized
RNA-based regulatory systems is the transactivation response
element (TAR) of HIV mRNA.[4] Specific binding of the Tat pro-
tein to TAR is essential for virus replication. The TAR RNA there-
fore represents a potential target for HIV therapy as well as a
model system to deepen understanding of RNA–small mole-
cule interactions and the development of drugs for RNA tar-
gets in general. The structure of TAR consists of two rigid
double-strand stems connected by a flexible bulge of three
bases, which provides a specific binding pocket for the Tat pro-
tein.[4] A variety of molecules that inhibit the Tat–TAR interac-
tion, and consequently virus replication, have been found;[5]

such molecules include peptidic derivatives of the Tat binding
motif, such as argininamide (1; Scheme 1), antibiotics such as
neomycin, and a set of small molecules with unnatural scaf-
folds. Interestingly, most classes of bulge-binding ligands for
which structures have been determined bind in distinct re-
gions and stabilize very different conformations of the bulge.[6]

In searching for new drugs or leads, one is usually interested
in finding druglike molecules with favorable pharmacokinetic
profiles and oral bioavailability.[7] These conditions are not met
by the majority of the ligands that inhibit the Tat–TAR interac-
tion found so far ;[8] most bear multiple charges and some are
very large in comparison to commercial drugs. One interesting
class of ligands found by virtual screening are promazines such
as acetylpromazine (2), for which an NMR structure has been
published,[6] and chlorpromazine (3).[6, 9] RNA binding of this

molecule is not dominated by charged interactions, and so its
binding pocket might facilitate binding of classes of ligands
with drug-like properties. We therefore decided to focus on
finding new molecular scaffolds with binding modes similar to
that of acetylpromazine.
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TAR RNA is a potential target for AIDS therapy. Ligand-based vir-
tual screening was performed to retrieve novel scaffolds for RNA-
binding molecules capable of inhibiting the Tat–TAR interaction,
which is essential for HIV replication. We used a “fuzzy” pharma-
cophore approach (SQUID) and an alignment-free pharmaco-
phore method (CATS3D) to carry out virtual screening of a
vendor database of small molecules and to perform “scaffold-
hopping”. A small subset of 19 candidate molecules were experi-

mentally tested for TAR RNA binding in a fluorescence resonance
energy transfer (FRET) assay. Both methods retrieved molecules
that exhibited activities comparable to those of the reference
molecules acetylpromazine and chlorpromazine, with the best
molecule showing ten times better binding behavior (IC50 =

46 mm). The hits had molecular scaffolds different from those of
the reference molecules.

Scheme 1. TAR–Tat interaction inhibitors. Argininamide (1), acetylpromazine
(2), chlorpromazine (3) and CGP40336A (4).

ChemBioChem 2005, 6, 1119 – 1125 DOI: 10.1002/cbic.200400376 � 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 1119



Virtual screening has been shown to be useful for finding
small, enriched sets of candidate molecules for further experi-
mental testing.[10] For TAR, only structure-based virtual screen-
ing has so far been reported, an automated docking approach
including a scoring function optimized for RNA resulted in the
identification of acetylpromazine.[9, 11] Other studies indicated
that the inherent flexibility of RNA structures might limit the
applicability of entirely structure-based approaches.[2c, 12]

Ligand-based approaches are an alternative to
structure-based virtual screening.[10] In particular,
methods including the active-analogue model of
pharmacophores have been shown to be suited for
scaffold-hopping.[13] In this work we applied two of
our recently published approaches—SQUID fuzzy
pharmacophores and CATS3D two-point pharmaco-
phore similarity searching—to find new Tat–TAR in-
hibitors.[14, 15] Both approaches are based on correla-
tion vectors (CVs) and are consequently invariant to
translation and rotation of molecules, allowing rapid
screening of large databases. The screening ap-
proaches were complemented by the use of a neural
network drug-likeness filter.[16] CATS3D encodes the
three-dimensional conformations of molecules in the
form of scaled histograms (“fingerprints”) which rep-
resent the frequencies of pairs of pharmacophoric
features within defined distance ranges. Similar fingerprints
code for molecules with pharmacophoric features in common
and which might be isofunctional. SQUID fuzzy pharmaco-
phore models approximate three-dimensional alignments of
several ligands by spatial Gaussian probability densities for the
presence of pharmacophoric features. Features that are more
conserved in the alignment are assigned higher weights than
less conserved features. The “fuzziness” parameter can be used
to represent the underlying alignment by different resolutions.
For virtual database screening these probability densities are
transformed into two-point correlation vectors.

Computational Methods

Preparation of the virtual screening database

We screened the SPECS commercial library (June 2003 version),
consisting of 229 658 compounds.[17] To obtain higher quality
results and to restrict the calculation of 3D conformations we
selected the 20 000 most druglike molecules as predicted by
an artificial neural network.[16] For each of these molecules up
to 20 3D conformations were calculated in MOE[18] with default
settings and the MMFF94 forcefield.[19] All molecules were neu-
tralized before descriptors were calculated.

Alignment of inhibitors

For the alignment of the known reference Tat–TAR interaction
inhibitors we used the flexible alignment tool of MOE[18] with
default settings and the MMFF94 forcefield.[19]

Calculation of the CATS3D descriptor

CATS3D encodes the conformation of a molecule in the form
of a histogram or correlation vector that contains the normal-
ized frequencies of all possible pairs of atom types in a mole-
cule.[15] All atom pairs were subdivided into groups character-
ized by atom–atom distance ranges and six different pharma-
cophore types (Figure 1). We used 20 equal distance bins, from

0–20 �. One of the pharmacophore types—cation, anion, hy-
drogen-bond acceptor, hydrogen-bond donor, polar (hydro-
gen-bond acceptor AND hydrogen-bond donor), or hydropho-
bic—was assigned to each atom with the ph4 aType function
of MOE.[18] Atoms with no matching pharmacophore type were
not considered further. The use of 20 distance bins for each of
the 21 possible combinations of pairs of pharmacophore
points resulted in a descriptor of 420 dimensions. The value
stored in each bin was scaled by the added incidences of the
two respective features. Each dimension (“bin”) of the
CATS3D CV was calculated according to Equation 1,

CVT
d ¼

1
N1 þ N2

X

i

X

j

1
2

dT
ij,d ð1Þ

where i and j are atom indices, d is a distance range, T is the
pair of pharmacophoric types of atoms i and j, N1 and N2 are
the total number of atoms of types of i and j present in a mol-
ecule, and dT

d (Kronecker delta) evaluates to 1 for all pairs of
atoms of type T within the distance range d. The factor of 0.5
in the sum avoids double counting of pairs. Pairs of atoms
with themselves were not considered. When CATS3D was used
to encode molecules for SQUID database screening, the final
descriptor vector was scaled to a maximum of 1.

Calculation of the fuzzy pharmacophore model

A SQUID fuzzy pharmacophore model approximates the spatial
distribution of pharmacophoric points in an alignment of mol-
ecules by a set of generalized potential pharmacophore points
(PPPs) of Gaussian probability densities.[14] Atoms in the align-
ment comprising the same pharmacophoric features are clus-

Figure 1. Calculation of the CATS3D correlation vector. Spheres denote potential pharma-
cophore points (two hydrogen bond acceptors, 17 hydrophobic PPPs). Distances are
measured between all pairs of atoms, and frequencies (freq) of pairs are determined for
all pairs of pharmacophoric types and for defined distance ranges (“bins”). As an exam-
ple, a section of the resulting CV representing hydrogen-bond acceptor–hydrophobe
pairs is shown.
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tered into PPPs for a more general and “fuzzy” representation
of the major characteristics of the alignment. The resolution of
the model is defined by the cluster radius, which is the param-
eter that affects how strictly features are clustered into PPPs.
The ideal resolution of the pharmacophore model has to be
determined separately for each set of aligned ligands.

Each PPP in the pharmacophore model is represented by four
attributes. The first of these is the pharmacophore type of the
atoms represented by the PPP, the second is the PPP position
in 3D space, while the third is the standard deviation (s) char-
acterizing the width of the distribution of the atoms represent-
ed by a PPP (in graphical illustrations of SQUID pharmaco-
phore models s is represented by the radii of the PPPs). The
fourth attribute (the conservation weight w) weights each PPP
by its conservation among the molecules of the alignment (in
graphical illustrations of SQUID pharmacophore models w is
represented by the intensity of the color of a PPP). This is
done under the assumption that more conserved features of a
set of molecules binding to the same receptor with compara-
ble affinity are more important for the binding than less con-
served features.

A schematic overview of the calculation of a SQUID pharmaco-
phore is given in Figure 2. The starting point is an alignment
of known active reference compounds. Assignment of pharma-
cophoric types (cation, anion, hydrogen-bond acceptor, hydro-
gen-bond donor, polar, or hydrophobic) transforms the align-
ment into a field of pharmacophoric features. Maxima in the
local feature densities (LFDs) were used as cluster seeds to
cluster the features into PPPs for a more general representa-
tion of the underlying alignment. For each atom k of type t in

the alignment the LFD was calculated by Equation 2,

LFDðatomt
kÞ ¼

X

i

max

�
0, 1�D2ðatomt

k,atomt
iÞ

rc

�
ð2Þ

where i are all atoms of type t in the molecular ensemble, D2 is
the Euclidean distance between two atoms, and rc is the clus-
ter radius. Positions of atoms of type t for which no other
atom of type t within rc yielding a higher LFD was found were
taken as cluster seeds for PPPs of type t. All atoms were subse-
quently clustered to the nearest cluster seed of their respective
type. The geometric centre of the atoms in a cluster was taken
as the position of the resulting PPP, whilst the median distance
from all atoms contributing to a PPP to the centre of the PPP
was taken as the value of the standard deviation (s) of the
PPP. For this value a minimum of 0.5 � was used. The conser-
vation weights of the PPPs were calculated by Equation 3,

wðPPPkÞ ¼
Xm

i¼1

min

�
1
m

,
no: atoms from moleculei of PPPk

no: atoms of PPPk

�

ð3Þ

where m is the number of molecules in the model. This func-
tion returns a maximum value of 1 for PPPs representing the
same number of atoms from all molecules of the ensemble,
and a minimum of m�1 for PPPs consisting only of atoms of
one molecule.

For virtual screening the three-dimensional distribution of the
PPPs is transformed into a two-point PPP CV (Figure 2), ar-
ranged exactly like the CATS3D CV. The PPP CV represents the

Figure 2. Calculation of the SQUID fuzzy pharmacophore correlation vector. Pharmacophore atom types are assigned to all atoms of a set of aligned mole-
cules. Maxima in the LFDs are determined for use as cluster seeds. In this example a cluster radius (rc) of 1.5 � was used. Standard deviations (s) and conser-
vation weights (w) are calculated for each PPP resulting from the clustering procedure. Finally, distances between all pairs of PPPs are measured and the
three-dimensional representation is transformed into a correlation vector by application of Equation 4. This results in conservation weights (w) for pairs of
PPPs in the CV. A section of the resulting CV representing polar–hydrophobe pairs is shown as an example.
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three-dimensional distribution of Gaussian densities in the
form of the distribution of pairs of PPPs over the distance bins
and over the feature types. The transformation is calculated
according to Equation 4,

CVT
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1
no:pairsðTÞ
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where p and q are PPPs, d is a distance range (“bin”), T is the
pair of pharmacophoric types of p and q (e.g. , Figure 2: p = hy-
drophobic, q = polar), w are the PPP conservation weights, s is
the standard deviation of a PPP, centred is the centre of the dis-
tance range d, and dT (Kronecker delta) evaluates to 1 for all
pairs of PPPs of types T. D2 is the Euclidean distance metric.
The factor of 0.5 in the sum avoids double counting of pairs.
Pairs of PPPs with themselves were not considered. The values
of each dimension were scaled by the total number of possible
pairs of PPPs of the two features considered. Finally the CV
was scaled to a maximum value of 1.

Like the CATS3D descriptor, the SQUID CV consisted of 420 di-
mensions, representing the same distance bins and pairs of
atom types. The SQUID CV was used to rank molecules encod-
ed with the CATS3D descriptor.

To obtain optimal virtual screening results, additional weights
(“feature-type weights”) were used to weight the importance
of each of the pharmacophoric feature types (e.g. , hydropho-
bic or hydrogen bond donor) in the CV. The sums of the single
feature-type weights were used to weight the importance of
each pair of feature types in the CV, and the sum of the proba-
bilities in the CV for each pair of features over all distance bins
was scaled to the value of the feature-type weights. Finally the
whole CV was scaled to a maximum of 1. It was found that
a simple optimization by permutation of all combinations of
the weight values {0.1, 0.2, 0.3, 0.4, 0.5} for each of the single
features and subsequent testing of these weights in virtual
screening was sufficient to retrieve good virtual screening
results.[14]

Virtual screening

For virtual screening all entries in the screening database were
scored according to their similarity to the query. For each mol-
ecule all but the best scoring conformation were removed. For
screening with CATS3D we used the Manhattan distance
[Eq. (5)] to rank database compounds according to their dis-
tance to the query structures. Lower distance values resulted
in higher (better) ranking positions.

DA,B ¼
Xi¼N

i¼1

jxiA�xiBj ð5Þ

In Equation (5), A and B indicate the CATS3D vectors of two
molecules, xi is the value of vector element i, and N is the total
number of vector elements (N = 420).

For ranking of the molecules of the screening database by
SQUID pharmacophore models we used the SQUID similarity
score [Eq. (6)] ,

SA,B ¼

Pi¼N

i¼1

ðxiAxiBÞ

1þ
Pi¼N

i¼1

ðð1�xiAÞxiBÞ
ð6Þ

where A is the CV of the SQUID pharmacophore and B is the
CATS3D CV of a molecule, xi is the ith element of a vector and
N is the total number of vector elements. The value xiA could
be regarded as the “idealized probability” of the presence of
atom features in xiB. This results in high scores for molecules
with many features in regions of the query descriptor which
have a high probability. The denominator, in contrast, penaliz-
es the presence of such pairs in regions with a low probability
in active molecules.

Results and Discussion

The SPECS compound set, containing 229 658 screening com-
pounds, was virtually screened for potential inhibitors of the
Tat–TAR interaction. Virtual screening consisted of three steps:
i) calculation of a “drug-likeness” score by an artificial neural
network as a prescreening step, ii) CATS3D pharmacophore
similarity searching, and iii) SQUID pharmacophore similarity
searching based on the flexible alignment of known active ref-
erence molecules. Steps ii) and iii) were performed independ-
ently for the 20 000 most “druglike” compounds.

Calculation of an alignment of reference compounds

Acetylpromazine (2)[9] and CGP40336A (4)[21] (Scheme 1) were
chosen as reference ligands from the literature with reported
nanomolar IC50 values. Binding to the bulge had been experi-
mentally verified for both molecules, although detailed struc-
tural data were only available for 2. As 4 contains a ring
system—which might be involved in stacking interactions as in
2—and a charged flexible part—which might interact similarly
to a potential charge–p interaction of 2 with C24,[6] we as-
sumed that 4 might have a binding mode comparable to that
of 2. For calculation of a SQUID model the two ligands had to
be aligned to each other. One possibility would be to dock the
reference ligands into the TAR binding pocket, whilst the other
would be to perform a flexible ligand-based alignment. Since
we were not able to reproduce the experimentally determined
TAR-bound conformation of acetylpromazine (2) within the
binding pocket either by MOE[18] docking or by the AUTODOCK
approach[22] (results not shown), we decided to align
CGP40336A (4) to the NMR conformation of 2 with the aid of
the flexible alignment tool in MOE. Interestingly, fruitless at-
tempts to reproduce the NMR structure of 2 complexed to TAR
RNA were also reported by Detering and Varani, who success-
fully reproduced many other RNA–ligand complexes with AU-
TODOCK, but failed to reproduce the acetylpromazine binding
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mode with an RMSD value below 2 �.[23] Their study supports
our decision to follow the ligand-based alignment approach.
For the alignment calculation we used the first NMR model of
the Protein Database entry (PDB code: 1 LVJ).[6] Since it was
not possible to predict reasonable conformations of the ali-
phatic amino groups of 4 from flexible alignment alone, we
decided to cut off these groups and to use molecule 5 instead

(Scheme 2) for the alignment and virtual screening. The top
scoring solutions of the flexible alignment were visually in-
spected, and we selected the conformation in which the
ligand appeared to fit best into the receptor (Figure 1). Stack-
ing and polar interactions of 4 occupy the same parts of the
binding pocket as acetylpromazine (2), so we think that a rea-
sonable starting solution was found (Figure 3).

Calculation of pharmacophores and virtual screening

For virtual screening with CATS3D we calculated the CATS3D
descriptor from those conformations of the reference mole-
cules that resulted from the flexible alignment. For screening
with the SQUID pharmacophore model the best resolution of

the model—that is, the optimal PPP cluster radius—and the
best weights for the different features had to be determined.
The performance of the different parameter sets was deter-
mined by their ability to rank the molecules from the pharma-
cophore model to top positions in comparison to molecules
from the COBRA reference dataset (version 3.12) of bioactive
molecules,[24] as described.[14] The best performing pharmaco-
phore model is shown in Figure 4.

Three virtual screening experiments were performed with
different queries : i) + , ii) the two CATS3D CVs calculated from
molecules 2 and 5, and iii) the CV from the optimized SQUID
pharmacophore model. The top scoring database molecules
from the results were visually inspected, and a set of 19 mole-
cules (ten molecules from SQUID and ten molecules from
CATS3D, one molecule overlap) was selected for experimental
testing.

FRET determination of the inhibition constants

All 19 molecules were tested for their potency in a Tat–TAR in-
hibition assay. As reference we determined the IC50 values of
argininamide,[25] acetylpromazine,[9] and chlorpromazine[9]—
three inhibitors from the literature with reported values of Ki

�1 mm for argininamide and IC50<1 mm for acetylpromazine
and chlorpromazine. The IC50 values found in our assay were
1.4 mm for argininamide and 500 mm for acetylpromazine and
chlorpromazine. The large discrepancies in the IC50 values for
acetylpromazine and chlorpromazine in relation to the report-
ed values are consistent with a recently published article that
reported a discrepancy of the same order of magnitude for
acetylpromazine (KD = 270 mm compared to IC50~1 mm, as pre-

Scheme 2. Modification of ligand 4 for the alignment.

Figure 3. a) Alignment of 5 to the NMR conformation of 2 (PDB-code: 1 LVJ).
b) The alignment shown in the binding pocket of TAR, with 2 in red and 5
in green.

Figure 4. SQUID fuzzy pharmacophore model derived from 2 and 5 in a) top
view and b) side view. The spheres represent the Gaussian feature densities
describing the pharmacophore. The radii of the PPPs are the standard devi-
ations of the underlying feature distribution. The intensities of the colors
denote the conservation of the underlying features in the alignment. Yellow
PPPs represent hydrophobic interactions, magenta PPPs represent hydrogen
bond donor interactions, and cyan PPPs represent hydrogen bond acceptor
interactions.
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viously stated).[8] As a first prescreening of the compounds we
performed single-point measurements of the inhibition poten-
cy with three fixed concentrations (10, 100, and 1000 mm) of
the candidate molecule. Molecules 6[26]and 7[27] (Scheme 3)
showed stronger inhibition than argininamide in the single-
point measurements (cf. Supporting Information). Multipoint
measurements yielded IC50 values of 500 mm and 46 mm for 6
and 7, respectively. Compound 6 was found by CATS3D with
reference molecule 5, whilst compound 7 was found by
SQUID.

To some degree, the two ligand-based pharmacophore
methods were able to perform “scaffold-hopping”, retrieving
isofunctional but slightly different molecular scaffolds from the
SPECS catalogue. Each new ligand contains a central structure
consisting of three rings with an aliphatic amide side-chain, as
in the reference compounds. An additional aromatic ring is
present at different positions in each of the two molecules, ex-
tending the original ring systems to four concatenated rings.
Flexible alignments of 6 and 7 (Figure 5) revealed that 7 fits
better to the reference alignment than 6. Also, the aliphatic
amide side-chain of 7 was more closely aligned to the corre-
sponding side-chains of the references. The nitrogen of the ad-
ditional pyridine ring of 7 was positioned directly above the
potential hydrogen bond acceptors of the reference molecules.
In both 6 and 7 the additional ring might be used for more fa-
vorable stacking interactions with the receptor. In 6 this poten-
tially favorable effect might have been compensated by steric
stress due to an unfavorable orientation of the ring or the
amide side-chain. Still the IC50 value is comparable to those of
acetylpromazine and chlorpromazine.

Conclusion

In this study we present the application of two ligand-based
virtual screening approaches for the compilation of a small fo-

cused library containing potential TAR RNA ligands. Among
the 19 molecules tested we found two molecules capable of
inhibiting the Tat–TAR interaction in a FRET assay. The SQUID
fuzzy pharmacophore approach yielded the more potent mole-
cule, with an improved activity of one order of magnitude rela-
tive to acetylpromazine (2) or chlorpromazine (3). This could
be an effect of the incorporation of information from multiple
active reference molecules into the pharmacophore-based
search for new TAR ligands.[14]

Ligand-based approaches provide a complementary concept
to structure-based design, which might be hampered by the
high inherent flexibility of RNA targets. Though it has been
shown that specific parameterization of scoring functions is
not essential for ligand docking to RNA, it is still significantly
slower than a ligand-based approach.[23] We have demonstrat-
ed that ligand-based pharmacophore approaches are capable
of finding new RNA ligands. Although the best molecule gave
a moderate IC50 of only 46 mm in our assay this molecule might
provide a starting point for further improvement. Certainly,
other assay types will be needed to confirm these findings and
to scrutinize them further. We also wish to stress that the new
inhibitors might not represent ideal candidates for starting a
lead optimization project. Additional experiments would have
to be performed, addressing the question of the role the addi-
tional ring system actually plays for RNA recognition and bind-
ing affinity. Furthermore, structures 6 and 7 might be interca-
lating agents and exhibit unspecific binding to both RNA and
DNA targets, due to their planar ring systems and relatively
high lipophilicity. Such issues could also be addressed in a dif-
ferent setting of the virtual screening approach; to obtain se-
lectivity towards RNA, for example, known DNA binders and in-
tercalators could be used as negative examples for similarity
searching. This tactic is currently being pursued in our labora-
tory.

Irrespective of the outcome of such analyses, both ligand-
based methods have proved useful for finding new molecules
within the activity range of known reference compounds. No-
tably, both approaches were originally developed for protein li-
gands, but they also seem to be applicable to virtual screening
for RNA ligands. To the best of our knowledge this study pres-
ents the first inhibitors of an RNA–protein complex found by
ligand-based virtual screening.

Experimental Section

Materials : Argininamide was purchased from Sigma Chemical
Corp. (St. Louis, USA). The molecules resulting from virtual screen-
ing were purchased from SPECS (Delft, The Netherlands) as stock
solutions in DMSO (10 mm), and were diluted for binding assays
with DEPC-treated water to 1 mm or 100 m. Fluorescence-based
binding assays[20] were performed in 96-well microplates at 37 8C.
Reader: FluoStar Galaxy (BMG Labtechnologies, Offenburg, Germa-
ny), excitation wavelength 540 nm, emission wavelength 590 nm.
Microplates: Corning 6860, black, nonbinding surface. The dye-
labeled Tat49–57-sequence fluoresceine-AAARKKRRQRRRAAAC-rhoda-
mine (1 mm stock solution) was purchased from the Thermo Elec-
tron Corporation (Ulm, Germany). Oligonucleotides were obtained
from Biospring (Frankfurt, Germany).

Scheme 3. Best molecules found by CATS3D (6) and SQUID (7).

Figure 5. Flexible alignment of a) 6 and b) 7 to the aligned reference mole-
cules 2 (black) and 5 (dark grey).
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In vitro transcription : Equimolar amounts of T7-primer (5’-TAATAC-
GACTCACTATAG-3’) and TAR template (5’-GGCCAGAGAGCTCC-
CAGGCTCAGATCTGGCCCTATAGTGAGTCGTATTA-3’) were mixed in
TE buffer (10 mm Tris-HCl, 1 mm EDTA; pH 7.4) to give a final con-
centration of 50 pmol mL�1 in a volume of 100 mL. After having
been heated to 90 8C for 5 min, the reaction mixture was allowed
to cool down slowly to RT. All in vitro transcriptions were per-
formed with the RiboMax Large Scale RNA Production Systems Kit
(P1300; Promega, Mannheim, Germany) as described by the manu-
facturer. Subsequent to transcription the DNA template was re-
moved as follows: after the transcription mixture had been heated
at 95 8C for 5 min it was chilled immediately on ice. RQ1 DNase
buffer (10 mL, Promega) and RQ1 RNase-free DNase (20 mL, 20 U,
Promega) were added and the mix was incubated for 30 min at
37 8C. After phenol/chloroform extraction, RNA was precipitated
with three volumes of ethanol in the presence of sodium acetate
(0.3 m, pH 5.2). The RNA was desalted on a NAPTM column (Amer-
sham Biosciences, Freiburg, Germany). After lyophilisation, the RNA
pellet was redissolved in DEPC-treated water to a final concentra-
tion of 100 mm (stock solution) or 1 mm (final dilution).

FRET assay : The following stock solutions were used in the assay:
labeled Tat-peptide (1 mm), TAR-RNA (1 mm), TK buffer (500 mm Tris-
HCl, 200 mm KCl, 0.1 % Triton-X 100, pH 7.4). The final volume per
well was 100 mL. The fluorescence of pure Tat peptide was deter-
mined first : stock solutions of Tat (10 mL) and TK buffer (10 mL)
were filled with DEPC-treated water to a final volume of 100 mL. Tat
solution (10 mL, 1 mm), TAR solution (10 mL, 1 mm), TK buffer (10 mL)
and DEPC-treated water (70 mL) were then mixed in a second well
to measure the emission of the Tat–TAR complex. After establishing
the numbers for free and bound peptide, single-point measure-
ments of potential inhibitors were carried out at 1000, 100, and
10 mm by using 10 mL of the stock solutions (10 mm, 1 mm, and
100 mm). RNA and peptide concentrations were kept constant at
100 nm in each well (10 mL Tat, 10 mL TAR, 10 mL TK buffer, 10 mL in-
hibitor, and 60 mL DEPC-treated water). Addition of DMSO strongly
increases the fluorescence of rhodamine independently of pep-
tide–RNA binding. To eliminate this effect, samples of Tat and of
Tat–TAR (each 100 nm) were also measured in the presence of
10 %, 1 %, or 0.1 % DMSO. Division of these figures by the value ob-
tained in pure water generated the correction factors. For com-
pounds that showed an inhibitory effect in the preliminary test,
complete titration curves were determined from eleven data
points. The molecular concentration at which the fitted titration
curve intersected with the mean value of the fluorescence counts
of the Tat–TAR complex and uncomplexed Tat was used as the IC50

value of a molecule.
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